Full List

Lithium Garnet Oxides      Tetrahedrite Thermoelectrics      Battery Materials     Atomistic Simulations     Ceria 

Full List:

  1. J. Dai, Y. Jiang, and W. Lai, “Study of diffusion and conduction in lithium garnet oxides LixLa3Zrx−5Ta7−xO12 by machine learning interatomic potentials”, Phys. Chem. Chem. Phys., 24, 15025 (2022)
  2. Y. Jiang, X. Zhu, and W. Lai, “Three electrodes analysis of a 3 V-class all-solid-state lithium-ion battery based on garnet-type solid electrolyte Li6.4La3Zr1.4Ta0.6O12”, J. Power Sources, 529, 231278 (2022)
  3. W. Lai, “Transport in Lithium Garnet Oxides as Revealed by Atomistic Simulations”, Annu. Rev. Mater. Res., 52, 305 (2022)
  4. M. Yu, E. Temeche, S. Indris, W. Lai, and R.M. Laine, “Silicon carbide (SiC) derived from agricultural waste potentially competitive with silicon anodes”,  Green Chemistry, 24, 4061 (2022)
  5. Q. Chen, N. H. Jalarvo, and W. Lai, “Na ion dynamics in P2-Nax[Ni1/3Ti2/3]O2: a combination of quasi-elastic neutron scattering and first-principles molecular dynamics study”, J. Mater. Chem. A, 8, 25290 (2020)
  6. J. C. Li, and W. Lai, “Structure and ionic conduction study on Li3PO4 and LiPON (Lithium phosphorous oxynitride) with the Density-Functional Tight-Binding (DFTB) method”, Solid State Ionics, 351, 115329 (2020)
  7. J. Dai, Q. Chen, T. Glossmann, and W. Lai, “Comparison of interatomic potential models on the molecular dynamics simulation of fast-ion conductors: A case study of a Li garnet oxide”,  Comput. Mater. Sci., 162, 333 (2019)
  8. Q. Chen, and W. Lai, “A Computational Study on P2-TypeNax[Ni1/3Ti2/3]O2 as Bi-Functional Electrode Material for Na-Ion Batteries”, J. Electrochem. Soc., 165, A3586 (2018)
  9. J. C. Li, D. P. Weller, D. T. Morelli, and W. Lai, “Density-functional theory based molecular dynamics simulation of tetrahedrite thermoelectrics: Effect of cell size and basis sets”, Comput. Mater. Sci., 144, 315 (2018)
  10. R. Shanmugam, Q. Chen, and W. Lai, “Structural study of Na2/3[Ni1/3Ti2/3]O2 using neutron diffraction and atomistic simulations”, Solid State Ionics, 314, 17 (2018)
  11. M. Klenk, S. E. Boeberitz, J. Dai, N. H. Jalarvo, V. K. Peterson, and W. Lai, “Lithium self-diffusion in a model lithium garnet oxide Li5La3Ta2O12: a combined quasi-elastic neutron scattering and molecular dynamics study”, Solid State Ionics, 312, 1-7 (2017)
  12. M. Klenk, and W. Lai, “Effect of exchange-correlation functionals on the density functional theory simulation of phase transformation of fast-ion conductors: A case study in the Li garnet oxide Li7La3Zr2O12”, Comput. Mater. Sci., 134, 132 (2017)
  13. J. C. Li, M. Z. Zhu, D. L. Abernathy, X. L. Ke, D. T. Morelli, and W. Lai, “First-principles studies of atomic dynamics in tetrahedrite thermoelectrics”, APL Mater., 4, 104811 (2016)
  14. M. Klenk, and W. Lai, “Finite-size effects on the molecular dynamics simulation of fast-ion conductors”, Solid State Ionics, 289, 143 (2016)
  15. X. Lu, D. T. Morelli, Y. Wang, W. Lai, Y. Xia, and V. Ozolins, “Phase Stability, Crystal Structure, and Thermoelectric Properties of Cu12Sb4S13-xSex Solid Solutions”, Chem. Mater., 28, 1781 (2016)
  16. W. Lai, Y. Wang, D. T. Morelli, and X. Lu, “From bonding asymmetry to anharmonic rattling in Cu12Sb4S13 tetrahedrites: when lone-pair electrons are not so lonely”, Adv. Funct. Mater.,25, 3648 (2015)
  17. J. N. Weker, Y. Li, R. Shanmugam, W. Lai, and W. C. Chueh, “Tracking non-uniform mesoscale transport in LiFePO4 agglomerates during electrochemical cycling”,ChemElectroChem, 2, 1576 (2015)
  18. M. Klenk, W. Lai, “Local structure and dynamics of lithium garnet ionic conductors: tetragonal and cubic Li7La3Zr2O12”, Phys. Chem. Chem. Phys., 17, 8758 (2015)
  19. Y. Wang, W. Lai, “Phase transition in lithium garnet oxide ionic conductors Li7La3Zr2O12: The role of Ta substitution and H2O/CO2 exposure”, J. Power Sources, 275, 612 (2015)
  20. R. Shanmugam and W. Lai, “Study of Transport Properties and Interfacial Kinetics of Na2/3[Ni1/3MnxTi2/3-x]O2 (x = 0,1/3) as Electrodes for Na-Ion Batteries”, J. Electrochem. Soc., 162, A8 (2015)
  21. Y. Wang, M. Klenk, K. Page, W. Lai, “Local Structure and Dynamics of Lithium Garnet Ionic Conductors: A Model Material Li5La3Ta2O12”, Chem. Mater., 26, 5613 (2014)
  22. R. Shanmugam and W. Lai, “Na2/3Ni1/3Ti2/3O2: “Bi-functional” electrode materials for Na-ion Batteries”, ECS Electrochem. Lett., 3, A23 (2014)
  23. Y. Wang, A. Huq, and W. Lai, “Insight into lithium distribution in lithium-stuffed garnet oxides through neutron diffraction and atomistic simulation: Li7-xLa3Zr2-xTaxO12 (x=0-2) series”, Solid State Ionics, 255, 39 (2014)
  24. W. C. Chueh, F. E. Gabaly, J. D. Sugar, N. C. Bartelt, A. H. McDaniel, K. R. Fenton, K. R. Zavadil, T. Tyliszczak, W. Lai, and K. F. McCarty, “Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping”, Nano Lett., 13, 866 (2013)
  25. F. Ciucci and W. Lai, “Electrochemical impedance spectroscopy of phase transition materials”, Electrochim. Acta, 81, 205 (2012)
  26. Y. Wang and W. Lai, “High Ionic Conductivity Lithium Garnet Oxides of Li7−xLa3Zr2−xTaxO12 Compositions”, Electrochem. Solid-State Lett., 15, A68 (2012)
  27. W. Lai, “Electrochemical modeling of single particle intercalation battery materials with different thermodynamics”, J. Power Sources, 196, 6534 (2011)
  28. F. Ciucci, T. Carraro, W. C. Chueh, and W. Lai, “Reducing error & measurement time in impedance spectroscopy using model based optimal experimental design”, Electrochim. Acta, 56, 5416 (2011)
  29. W. Lai and F. Ciucci, “Mathematical modeling of porous battery electrodes – revisit of Newman’s model”, Electrochim. Acta, 56, 4369 (2011)
  30. F. Ciucci and W. Lai, “Derivation of micro/macro lithium battery models from homogenization”, Transp. Porous Med., 88, 249 (2011)
  31. W. C. Chueh, C.-K. Yang, C. M. Garland, W. Lai, and S. M. Haile, “Unusual decrease in conductivity upon hydration in acceptor doped microcrystalline ceria”, Phys. Chem. Chem. Phys., 13, 6442 (2011)
  32. W. Lai and F. Ciucci, “Small-signal apparent diffusion impedance of intercalation battery electrodes”, J. Electrochem. Soc., 158(2), A115, (2011)
  33. W. Lai and F. Ciucci, “Thermodynamics and kinetics of phase transformation in intercalation battery electrodes – phenomenological modeling”, Electrochim. Acta, 56, 531 (2010)
  34. W. Lai, “Fourier analysis of complex impedance (amplitude and phase) in nonlinear systems: a case study of diodes”, Electrochim. Acta, 55, 5511 (2010)
  35. W. Lai, C. K. Erdonmez, T. F. Marinis, C. K. Bjune, N. J. Dudney, F. Xu, R. Wartena, and Y.-M. Chiang, “Ultrahigh energy density microbatteries enabled by new electrode architecture and micropackaging design”, Adv. Mater., 22, E139 (2010)
  36. F. Xu, N. J. Dudney, G. M. Veith, Y. Kim, C. K. Erdonmez, W. Lai, and Y.-M. Chiang, “Properties of lithium phosphorus oxynitride (LIPON) for 3D solid-state lithium batteries”, J. Mater. Res., 25(8), 1507 (2010)
  37. W. C. Chueh, W. Lai, and S. M. Haile, “Electrochemical behavior of ceria with selected metal electrodes”, Solid State Ionics, 179, 1036 (2008)
  38. W. Lai and S. M. Haile, “Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: A case study of Pt|SDC|BSCF”, Phys. Chem. Chem. Phys., 10, 865 (2008)
  39. Y. Hao, Z. P. Shao, J. Mederos, W. Lai, D. G. Goodwin, and S. M. Haile, “Recent advances in single-chamber fuel-cells: Experiment and modeling”, Solid State Ionics, 177, 2013 (2006)
  40. W. Lai and S. M. Haile, “Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: A case study of ceria”, J. Am. Ceram. Soc., 88, 2979 (2005)
  41. M. A. Thundathil, W. Lai, L. Noailles, B. S. Dunn, and S. M. Haile, “High surface-area ceria aerogel”, J. Am. Ceram. Soc., 87(8), 1442 (2004)

Lithium Garnet Oxides:

  1. J. Dai, Y. Jiang, and W. Lai, “Study of diffusion and conduction in lithium garnet oxides LixLa3Zrx−5Ta7−xO12 by machine learning interatomic potentials”, Phys. Chem. Chem. Phys., 24, 15025 (2022)
  2. Y. Jiang, X. Zhu, and W. Lai, “Three electrodes analysis of a 3 V-class all-solid-state lithium-ion battery based on garnet-type solid electrolyte Li6.4La3Zr1.4Ta0.6O12”, J. Power Sources, 529, 231278 (2022)
  3. W. Lai, “Transport in Lithium Garnet Oxides as Revealed by Atomistic Simulations”, Annu. Rev. Mater. Res., 52, 305 (2022)
  4. J. Dai, Q. Chen, T. Glossmann, and W. Lai, “Comparison of interatomic potential models on the molecular dynamics simulation of fast-ion conductors: A case study of a Li garnet oxide”,  Comput. Mater. Sci., 162, 333 (2019)
  5. M. Klenk, S. E. Boeberitz, J. Dai, N. H. Jalarvo, V. K. Peterson, and W. Lai, “Lithium self-diffusion in a model lithium garnet oxide Li5La3Ta2O12: a combined quasi-elastic neutron scattering and molecular dynamics study”, Solid State Ionics, 312, 1-7 (2017)
  6. M. Klenk, and W. Lai, “Effect of exchange-correlation functionals on the density functional theory simulation of phase transformation of fast-ion conductors: A case study in the Li garnet oxide Li7La3Zr2O12”, Comput. Mater. Sci., 134, 132 (2017)
  7. M. Klenk, and W. Lai, “Finite-size effects on the molecular dynamics simulation of fast-ion conductors”, Solid State Ionics, 289, 143 (2016)
  8. M. Klenk, W. Lai, “Local structure and dynamics of lithium garnet ionic conductors: tetragonal and cubic Li7La3Zr2O12”, Phys. Chem. Chem. Phys., 17, 8758 (2015)
  9. Y. Wang, W. Lai, “Phase transition in lithium garnet oxide ionic conductors Li7La3Zr2O12: The role of Ta substitution and H2O/CO2 exposure”, J. Power Sources, 275, 612 (2015)
  10. Y. Wang, M. Klenk, K. Page, W. Lai, “Local Structure and Dynamics of Lithium Garnet Ionic Conductors: A Model Material Li5La3Ta2O12”, Chem. Mater., 26, 5613 (2014)
  11. Y. Wang, A. Huq, and W. Lai, “Insight into lithium distribution in lithium-stuffed garnet oxides through neutron diffraction and atomistic simulation: Li7-xLa3Zr2-xTaxO12 (x=0-2) series”, Solid State Ionics, 255, 39 (2014)
  12. Y. Wang and W. Lai, “High Ionic Conductivity Lithium Garnet Oxides of Li7−xLa3Zr2−xTaxO12 Compositions”, Electrochem. Solid-State Lett., 15, A68 (2012)

Tetrahedrite Thermoelectrics:

  1. J. C. Li, D. P. Weller, D. T. Morelli, and W. Lai, “Density-functional theory based molecular dynamics simulation of tetrahedrite thermoelectrics: Effect of cell size and basis sets”, Comput. Mater. Sci., 144, 315 (2018)
  2. J. C. Li, M. Z. Zhu, D. L. Abernathy, X. L. Ke, D. T. Morelli, and W. Lai, “First-principles studies of atomic dynamics in tetrahedrite thermoelectrics”, APL Mater., 4, 104811 (2016)
  3. X. Lu, D. T. Morelli, Y. Wang, W. Lai, Y. Xia, and V. Ozolins, “Phase Stability, Crystal Structure, and Thermoelectric Properties of Cu12Sb4S13-xSex Solid Solutions”, Chem. Mater., 28, 1781 (2016)
  4. W. Lai, Y. Wang, D. T. Morelli, and X. Lu, “From bonding asymmetry to anharmonic rattling in Cu12Sb4S13 tetrahedrites: when lone-pair electrons are not so lonely”, Adv. Funct. Mater.,25, 3648 (2015)

Battery Materials:

  1. Q. Chen, N. H. Jalarvo, and W. Lai, “Na ion dynamics in P2-Nax[Ni1/3Ti2/3]O2: a combination of quasi-elastic neutron scattering and first-principles molecular dynamics study”, J. Mater. Chem. A, 8, 25290 (2020)
  2. Q. Chen, and W. Lai, “A Computational Study on P2-TypeNax[Ni1/3Ti2/3]O2 as Bi-Functional Electrode Material for Na-Ion Batteries”, J. Electrochem. Soc., 165, A3586 (2018)
  3. R. Shanmugam, Q. Chen, and W. Lai, “Structural study of Na2/3[Ni1/3Ti2/3]O2 using neutron diffraction and atomistic simulations”, Solid State Ionics, 314, 17 (2018)
  4. R. Shanmugam and W. Lai, “Study of Transport Properties and Interfacial Kinetics of Na2/3[Ni1/3MnxTi2/3-x]O2 (x = 0,1/3) as Electrodes for Na-Ion Batteries”, J. Electrochem. Soc., 162, A8 (2015)
  5. J. N. Weker, Y. Li, R. Shanmugam, W. Lai, and W. C. Chueh, “Tracking non-uniform mesoscale transport in LiFePO4 agglomerates during electrochemical cycling”,ChemElectroChem, 2, 1576 (2015)
  6. R. Shanmugam and W. Lai, “Na2/3Ni1/3Ti2/3O2: “Bi-functional” electrode materials for Na-ion Batteries”, ECS Electrochem. Lett., 3, A23 (2014)
  7. W. C. Chueh, F. E. Gabaly, J. D. Sugar, N. C. Bartelt, A. H. McDaniel, K. R. Fenton, K. R. Zavadil, T. Tyliszczak, W. Lai, and K. F. McCarty, “Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping”, Nano Lett., 13, 866 (2013)

Atomistic Simulations:

  1. Q. Chen, N. H. Jalarvo, and W. Lai, “Na ion dynamics in P2-Nax[Ni1/3Ti2/3]O2: a combination of quasi-elastic neutron scattering and first-principles molecular dynamics study”, J. Mater. Chem. A, 8, 25290 (2020)
  2. J. C. Li, and W. Lai, “Structure and ionic conduction study on Li3PO4 and LiPON (Lithium phosphorous oxynitride) with the Density-Functional Tight-Binding (DFTB) method”, Solid State Ionics, 351, 115329 (2020)
  3. J. Dai, Q. Chen, T. Glossmann, and W. Lai, “Comparison of interatomic potential models on the molecular dynamics simulation of fast-ion conductors: A case study of a Li garnet oxide”,  Comput. Mater. Sci., 162, 333 (2019)
  4. Q. Chen, and W. Lai, “A Computational Study on P2-TypeNax[Ni1/3Ti2/3]O2 as Bi-Functional Electrode Material for Na-Ion Batteries”, J. Electrochem. Soc., 165, A3586 (2018)
  5. J. C. Li, D. P. Weller, D. T. Morelli, and W. Lai, “Density-functional theory based molecular dynamics simulation of tetrahedrite thermoelectrics: Effect of cell size and basis sets”, Comput. Mater. Sci., 144, 315 (2018)
  6. R. Shanmugam, Q. Chen, and W. Lai, “Structural study of Na2/3[Ni1/3Ti2/3]O2 using neutron diffraction and atomistic simulations”, Solid State Ionics, 314, 17 (2018)
  7. M. Klenk, S. E. Boeberitz, J. Dai, N. H. Jalarvo, V. K. Peterson, and W. Lai, “Lithium self-diffusion in a model lithium garnet oxide Li5La3Ta2O12: a combined quasi-elastic neutron scattering and molecular dynamics study”, Solid State Ionics, 312, 1-7 (2017)
  8. M. Klenk, and W. Lai, “Effect of exchange-correlation functionals on the density functional theory simulation of phase transformation of fast-ion conductors: A case study in the Li garnet oxide Li7La3Zr2O12”, Comput. Mater. Sci., 134, 132 (2017)
  9. M. Klenk, and W. Lai, “Finite-size effects on the molecular dynamics simulation of fast-ion conductors”, Solid State Ionics, 289, 143 (2016)
  10. J. C. Li, M. Z. Zhu, D. L. Abernathy, X. L. Ke, D. T. Morelli, and W. Lai, “First-principles studies of atomic dynamics in tetrahedrite thermoelectrics”, APL Mater., 4, 104811 (2016)
  11. W. Lai, Y. Wang, D. T. Morelli, and X. Lu, “From bonding asymmetry to anharmonic rattling in Cu12Sb4S13 tetrahedrites: when lone-pair electrons are not so lonely”, Adv. Funct. Mater.,25, 3648 (2015)
  12. M. Klenk, W. Lai, “Local structure and dynamics of lithium garnet ionic conductors: tetragonal and cubic Li7La3Zr2O12”, Phys. Chem. Chem. Phys., 17, 8758 (2015)
  13. Y. Wang, M. Klenk, K. Page, W. Lai, “Local Structure and Dynamics of Lithium Garnet Ionic Conductors: A Model Material Li5La3Ta2O12”, Chem. Mater., 26, 5613 (2014)
  14. Y. Wang, A. Huq, and W. Lai, “Insight into lithium distribution in lithium-stuffed garnet oxides through neutron diffraction and atomistic simulation: Li7-xLa3Zr2-xTaxO12 (x=0-2) series”, Solid State Ionics, 255, 39 (2014)

Ceria:

  1. W. C. Chueh, C.-K. Yang, C. M. Garland, W. Lai, and S. M. Haile, “Unusual decrease in conductivity upon hydration in acceptor doped microcrystalline ceria”, Phys. Chem. Chem. Phys., 13, 6442 (2011)
  2. W. C. Chueh, W. Lai, and S. M. Haile, “Electrochemical behavior of ceria with selected metal electrodes”, Solid State Ionics, 179, 1036 (2008)
  3. W. Lai and S. M. Haile, “Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: A case study of Pt|SDC|BSCF”, Phys. Chem. Chem. Phys., 10, 865 (2008)
  4. W. Lai and S. M. Haile, “Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: A case study of ceria”, J. Am. Ceram. Soc., 88, 2979 (2005)
  5. M. A. Thundathil, W. Lai, L. Noailles, B. S. Dunn, and S. M. Haile, “High surface-area ceria aerogel”, J. Am. Ceram. Soc., 87(8), 1442 (2004)